Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A New Reagentless Carbon Analyzer for Space Applications

1999-07-12
1999-01-2030
Currently used instruments for the analysis of total inorganic carbon (TIC) and total organic carbon (TOC) in water and wastewater samples require the use of hazardous chemicals which is not acceptable in their application for long-term space missions. A new design concept of the “reagentless” carbon analyzer (RCA) for determination of both TIC and TOC for water quality monitoring in space is proposed and tested. The concept is based on generating all the chemicals needed for the TIC and TOC analysis within the instrument, and avoiding the need for storing a supply of chemicals. The chemicals are either generated or recirculated in the instrument, or an alternative approach for their use is developed, such as using photocatalytic oxidation instead of oxidizing chemicals for TOC analysis. The fully developed miniaturized instrument will incorporate microfluidic based design principles.
Technical Paper

Analysis of Direct Solar Illumination on the Backside of Space Station Solar Cells

1999-08-02
1999-01-2431
The International Space Station (ISS) is a complex spacecraft that will take several years to assemble in orbit. During many of the assembly and maintenance procedures, the space station’s large solar arrays must be locked, which can significantly reduce power generation. To date, power generation analyses have not included power generation from the backside of the solar cells in a desire to produce a conservative analysis. This paper describes the testing of ISS solar cell backside power generation, analytical modeling, and analysis results on an ISS assembly mission.
Technical Paper

ISS TransHab: Architecture Description

1999-07-12
1999-01-2143
This paper will describe the ISS TransHab’s architectural design being proposed as a habitation module for the International Space Station. TransHab is a space inflatable habitation module that originally was designed to support a crew of six as a transit habitat (TransHab) to and from Mars. As an evolution of TransHab, it has transformed into the proposed alternative habitat module for the International Space Station (ISS). A team of architects and engineers at the Johnson Space Center has been designing and testing this concept to make it a reality.
Technical Paper

Wide Temperature Core Loss Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

1999-08-02
1999-01-2542
100 kHz core loss properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of Bpeak. For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at Bpeak = 0.1 T and 50 C only. For example, the 100 kHz specific core loss ranged from 50 mW/cm3 to 70 mW/cm3 for the 3 materials, when measured at 0.1 T and 50 C. This very low high frequency core loss, together with near zero saturation magnetostriction and insensitivity to rough handling, makes these amorphous ribbons strong candidates for power magnetics applications in wide temperature aerospace environments
Technical Paper

Design, Fabrication, and Testing of a 10 kW-hr H2-O2 PEM Fuel Cell Power System for High Altitude Balloon Applications

1999-08-02
1999-01-2588
NASA Glenn Research Center and the Wallops Flight Facility jointly conducted a PEM fuel cell power system development effort for high altitude balloon applications. This was the first phase of NASA efforts to offer higher balloon payload power levels with extended duration mission capabilities for atmospheric science missions. At present, lead-acid batteries typically supply about 100 watts of power to the balloon payload for approximately 8 hours duration. The H2-O2 PEM fuel cell demonstration system developed for this effort can supply at least 200 watts for 48 hours duration. The system was designed and fabricated, then tested in ambient ground environments as well as in a thermal vacuum chamber to simulate operation at 75 kft. altitude. Initially, this program was planned to culminate with a demonstration flight test but no flight has been scheduled, thus far.
Technical Paper

A Reevaluation of Appendix C Ice Roughness Using Laser Scanning

2015-06-15
2015-01-2098
Many studies have been performed to quantify the formation and evolution of roughness on ice shapes created in Appendix C icing conditions, which exhibits supercooled liquid droplets ranging from 1-50 µm. For example Anderson and Shin (1997), Anderson et al. (1998), and Shin (1994) represent early studies of ice roughness during short-duration icing events measured in the Icing Research Tunnel at the NASA Glenn Research Center. In the historical literature, image analysis techniques were employed to characterize the roughness. Using multiple images of the roughness elements, these studies of roughness focused on extracting parametric representations of ice roughness elements. While the image analysis approach enabled many insights into icing physics, recent improvements in laser scanning approaches have revolutionized the process of ice accretion shape characterization.
Journal Article

Influence of Freestream Temperature on Ice Accretion Roughness

2019-06-10
2019-01-1993
The influence of freestream static temperature on roughness temporal evolution and spatial variation was investigated in the Icing Research Tunnel (IRT) at NASA Glenn Research Center. A 53.34 cm (21-in.) NACA 0012 airfoil model and a 152.4 cm (60-in.) HAARP-II business jet airfoil model were exposed to Appendix C clouds for fixed exposure times and thus fixed ice accumulation parameter. For the base conditions, the static temperature was varied to produce different stagnation point freezing fractions. The resulting ice shapes were then scanned using a ROMER Absolute Arm system and analyzed using the self-organizing map approach of McClain and Kreeger. The ice accretion prediction program LEWICE was further used to aid in interrogations of the ice accretion point clouds by using the predicted surface variations of local collection efficiency.
Technical Paper

Chemical Analysis and Water Recovery Testing of Shuttle-Mir Humidity Condensate

1999-07-12
1999-01-2029
Humidity condensate collected and processed in-flight is an important component of a space station drinking water supply. Water recovery systems in general are designed to handle finite concentrations of specific chemical components. Previous analyses of condensate derived from spacecraft and ground sources showed considerable variation in composition. Consequently, an investigation was conducted to collect condensate on the Shuttle while the vehicle was docked to Mir, and return the condensate to Earth for testing. This scenario emulates an early ISS configuration during a Shuttle docking, because the atmospheres intermix during docking and the condensate composition should reflect that. During the STS-89 and STS-91 flights, a total volume of 50 liters of condensate was collected and returned. Inorganic and organic chemical analyses were performed on aliquots of the fluid.
Technical Paper

Aerogel-Based Insulation for Advanced Space Suit

2002-07-15
2002-01-2316
Future spacesuits will require thermal insulation protection in low-earth orbit (LEO), in the near-earth neighborhood and in planetary environments. In order to satisfy all future exploration needs and lower production and maintenance costs, a common thermal insulation is desirable that will perform well in all these environments. A highly promising material is a fiber-reinforced aerogel composite insulation currently being developed at the Johnson Space Center. This paper presents an overview of aerogels and their manufacture, a summary of the development of a flexible fiber-based aerogel for NASA by Aspen Aerogels, Inc., and performance data of aerogels relative to flexible commercial insulation. Finally, future plans are presented of how an aerogel-based insulation may be integrated into a spacesuit for ground testing as well as for a flight configuration.
X